
















Soutenance de thèse : Dhiraj GARG
Équipe : MécaFlu
Titre : Numerical Modeling and Simulation of Polymerization Reactions in Coiled Flow Inverters
Résumé : L’objectif de ce travail dut d’améliorer la modélisation et la simulation de la polymérisation radicalaire dans des réacteurs continus et discontinus. Une solution analytique explicite généralisée (AS) fut obtenue dans le cas de la polymérisation en masse/solution, homogène et isotherme menée dans un réacteur fermé de volume variable. Les différentes étapes considérées furent l'initiation, la propagation, le transfert au monomère, au solvant, à un agent de transfert de chaîne, la terminaison par combinaison et dismutation. Différents modèles rendant compte des effets de gel, de vitrification et de cage ont également été considérés. AS a été validée avec succès par comparaison avec des solutions numériques et des données expérimentales de la littérature. Par ailleurs, AS a été étendue à des conditions pour lesquelles elle ne fut pas originellement développée comme par exemple des conditions non isothermes. La polyvalence et la flexibilité de AS sur l’ensemble de l’échelle de conversion du monomère furent ainsi démontrées. Ensuite, pour élargir encore plus son champ d'application, AS fut utilisée dans des simulations numériques (CFD). Une nouvelle transformation très simple a été proposée afin d’adimensionnaliser les constantes cinétiques en terme de concentration. Cela a permis de rentrer dans les simulations les données chimiques sous leur forme originale en mole et de faciliter ainsi le codage et le débogage du code de calcul. Cette transformation a ensuite été utilisée pour évaluer trois géométries tubulaires de microréacteur, un réacteur tubulaire droit (STR), à géométrie hélicoïdale (CTR) et à inversion de flux (CFIR), dans des conditions d'alimentation différentes (fluides d’entrée non ou parfaitement mélangés) et à de très faibles nombres de Reynolds (<1). La modélisation a été réalisée avec des paramètres constants ou variables des propriétés physiques du fluide sous écoulement (densité, viscosité et conductivité thermique) ainsi qu’en variant de manière discrète les coefficients de diffusion. Leurs effets sur les résultats de simulation ont été observés et comparés avec les données expérimentales publiées pour 4 monomères différents et furent en très bon accord. Les résultats pour le cas d’un mélange parfait furent indépendants de la géométrie des microréacteurs. Le CFIR semble être le réacteur le plus prometteur puisque, dans les conditions de microréaction étudiées, il a permis le meilleur contrôle des caractéristiques du polymère synthétisé.
La présentation aura lieu le mardi 14 mars à 14h00 dans la salle des séminaires, située au sein du département de Mécanique d’ICube (4 rue Boussingault - 67000 Strasbourg).
Lors du congrès annuel du CIRSE 2025, organisé du 13 au 17 septembre à Barcelone en Espagne, le...
Après un parcours en biologie et en neurosciences, Maria Fiori a choisi de s’engager dans la...
La nouvelle année débute avec le lancement de quatre nouveaux projets Interreg auxquels le...
Lors du congrès annuel du CIRSE 2025, organisé du 13 au 17 septembre à Barcelone en Espagne, le...
Madame Amonet Bazam Ouoba Nebie, doctorante au 2iE-Institut International d'Ingénierie de l'Eau et...
Lucas Striegel est maître de conférences à ICube au sein de l'équipe génie civil et énergétique et...
L'équipe de ICube Strasbourg INSA Strasbourg(Groupe INSA) est à l'origine d'une nouvelle...
Encore un lauréat du laboratoire ICube au Challenge Mature Your PhD ! Le Challenge Mature Your...
Camps de basket accessibles, transport malin de kayak, endoscopie augmentée et capteur...
Jonas Mehtali, doctorant au laboratoire ICube – Université de Strasbourg, au sein de l’équipe...