PhD Thesis: Akbar GHAZAVIZADEH
Team: MMB
Title: Modeling and simulation of the micromechanical behavior of semi-crystalline polyethylene including the effect of interphase layer
Abstract : Interphase layer in semi-crystalline polyethylene has been the least known constituent of this widely used polymer, in terms of the mechanical properties. Because of the metastable nature and nanometric size of the interphase and its intimate mechanical coupling to the neighboring crystal and amorphous domains, detailed characterization of its mechanical properties have eluded any experimental evaluation. Mechanical characterization of the interphase layer in polyethylene is the focus of two major technical parts of my dissertation. The characterization scenarios are deployed by applying micromechanics and continuum mechanics relationships to the relevant atomistic simulation data. The third technical section deals with the viscoplastic deformation simulation of an aggregate of polyethylene using a multiscale, homogenization analysis.
Elastic characterization of the interphase layer is implemented by applying the relationships of two distinct micromechanical homogenization techniques to the Monte Carlo molecular simulation data available for the interlamellar domain. The micromechanical approaches are “Extended Composite Inclusion Model” and “Double-Inclusion Method” and the atomistic data includes the variation of the interlamellar stiffness as well as the amorphous and interphase thicknesses with temperature for 350-450 K. To implement this characterization, the temperature dependence of the amorphous stiffness is also required, which is established using the relevant findings from the literature. The interphase stiffness is successfully dissociated form that of the interlamellar domain using the abovementioned micromechanical techniques whose results match perfectly. Interestingly and contrary to conventional materials, the interphase stiffness lacks the common feature of positive definiteness, which is indicative of its mechanical instability. An ad hoc sensitivity analysis is devised to assess the impact of the existing uncertainties on the dissociated results. The effective Young’s modulus of the interphase is evaluated using its dissociated stiffness, which compares well with the effective interlamellar Young’s modulus for highly crystalline polyethylene, reported in an experimental study. This satisfactory agreement along with the identical results produced by the two micromechanical approaches verifies the new information about the interphase elastic properties and endorses the proposed dissociation methodology to be applied to similar problems...
The defense will take place on Friday 13th December, at 14h00, in the seminar room, ICube, 4 rue Boussingault, Strasbourg.
Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Haitao Ge, doctorant à l'INSA Strasbourg au sein de l'équipe Génie civil - énergétique (GCE) a...
Dans le cadre du projet Interreg Offensive Science 2PhaseEx, cinq membres de l’équipe ICube/Mécaflu...
Le 13 novembre, le CNRS a réuni les 26 start-up issues de ses laboratoires sous tutelle,...
L'équipe de l'Université de Strasbourg et la délégation Alsace du CNRS se sont brillamment...
Le vendredi 20 septembre a eu lieu la réunion de lancement du projet INTERREG 2PhaseEx, au...
Le projet ENERGETIC a lancé sa première vidéo promotionnelle illustrant les principaux objectifs et...
Paris 27 aout 2024 – ARCHOS annonce que POLADERME, filiale du Startup studio Medtech du groupe...
Les topographes de l’INSA Strasbourg exerçant leurs activités de recherche au sein de l’équipe...