PhD defence : Hussein El Amouri
Team: SDC
Date & time : September 22nd, at 09:00 AM at ICube, Illkirch (Room A301)
Title : "Learning Explainable Constrained Representation for Time Series"
Abstract : This PhD research introduces a novel approach to learning explainable constrained representations for time series data, with a primary focus on addressing two critical challenges: the lack of labeled data and time series distortions. Labeling time series data is a resource-intensive process; therefore, clustering methods are widely used. However, these clustering methods may not produce results aligned with expert requirements and can benefit from further improvement through constrained clustering. Second, time series data often contain distortions, and capturing these distortions is essential for accurate clustering. Our proposed approach empowers experts to guide the learning process by providing information (constraints) about pairs of samples, indicating whether they are similar or dissimilar. This concept stems from the framework of constrained learning, where experts provide information to guide the clustering process. This approach is rooted in the concept of 'shapelets,' which are discriminative subsequences capable of distinguishing between different patterns within time series data. We extend our work from a previous study on unsupervised shapelet learning, referred to as 'Learning DTW Preserving Shapelets,' into a semi-supervised approach. In this extension, we leverage both types of constraints while approximating Dynamic Time Warping (DTW) distances. DTW is a distance measure well-suited for accommodating the various distortions commonly encountered in time series data. We term this extended approach 'Constrained DTW Preserving Shapelets,' as it effectively incorporates the constraints provided by experts into the learning process while approximating DTW in the transformed space. Furthermore, our research delves into the interpretability of shapelets and explores their potential for providing descriptions of clustering results. This interpretability enables experts to gain a deeper understanding of the clustering results, facilitating an interactive process that ultimately leads to improved clustering outcomes. Additionally, by utilizing the feature space, we can investigate the possibility of proposing further constraints to experts, enabling an active and informed clustering process.
The jury will be composed of:
Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Haitao Ge, doctorant à l'INSA Strasbourg au sein de l'équipe Génie civil - énergétique (GCE) a...
Dans le cadre du projet Interreg Offensive Science 2PhaseEx, cinq membres de l’équipe ICube/Mécaflu...
Le 13 novembre, le CNRS a réuni les 26 start-up issues de ses laboratoires sous tutelle,...
L'équipe de l'Université de Strasbourg et la délégation Alsace du CNRS se sont brillamment...
Le vendredi 20 septembre a eu lieu la réunion de lancement du projet INTERREG 2PhaseEx, au...
Le projet ENERGETIC a lancé sa première vidéo promotionnelle illustrant les principaux objectifs et...
Paris 27 aout 2024 – ARCHOS annonce que POLADERME, filiale du Startup studio Medtech du groupe...
Les topographes de l’INSA Strasbourg exerçant leurs activités de recherche au sein de l’équipe...