
















Thèse : Inventive Solutions Retrieval from Patent documents via Natural Language Processing
Équipe :
Le 17 décembre 2021 10h dans l'amphiteatre de l'INSAS (24 BD de la Victoire, 67000 Strasbourg), aura lieu la soutenance de thèse de Xin NI un doctorant de l'équipe .
Abstract:
Innovation is a key factor for companies developing products and engaging in continuous progress in a highly competitive market. In recent years, in the context of this growing concern for engineering innovation, the demand for inventive engineering solutions has been increasing rapidly in companies. Besides, a large number of published patent documents from wider domains tend to contain the latest inventive knowledge in the world. Mining this sort of knowledge is a significant way to enable industrial innovation. It is also an important alternative to brace the complex manufacturing challenges.
Nevertheless, it is always a significant challenge for engineers without a broad
understanding of different domain knowledge to make full use of the inventive knowledge contained in patent documents. Especially, exploring several patents by an expert rapidly turns to be an arduous task. Theory of Inventive Problem Solving (TRIZ) was proposed to provide a logical approach to enhance creativity. However, its lack of formalization and complex principles generate a huge obstacle to implementing it, even for engineers to understand it.
In order to address the aforementioned challenges, in the thesis, we aim to automate the entire inventive problem-solving process by using patent documents based on Natural Language Processing (NLP) techniques. In particular, we propose four main contributions: 1. two similar problem retrieval models called IDM-Similar based on Word2vec neural networks and SAM-IDM based on LSTM neural networks are proposed to retrieve similar problems from different domain patents; 2. a problem-solution matching model named IDM-Matching according to XLNet neural networks is proposed to build connections between problems and solutions in patent documents; 3. an inventive solutions ranking model called PatRIS based on multiple criteria decision analysis approach is proposed to rank potential inventive solutions; 4. a software prototype named PatentSolver combining aforementioned models is developed to provide engineers with a real tool to prepare inventive solutions from patent documents. These models have been evaluated on both benchmark and real-world patent datasets.
Les membres du Jury sont :
Lors du congrès annuel du CIRSE 2025, organisé du 13 au 17 septembre à Barcelone en Espagne, le...
Le 5 février 2026, les partenaires du projet Interreg 2PhaseEx se sont réunis à la Manufacture des...
La réunion de mi-parcours du projet Interreg IMAGINE-STIM s’est tenue le 29 janvier. Elle a permis...
Les vendredi 30 et samedi 31 janvier, à Schirmeck, le festival Alsascience, organisé par le Jardin...
Après un parcours en biologie et en neurosciences, Maria Fiori a choisi de s’engager dans la...
Le 16 janvier 2026, l’Université de Strasbourg et Inria ont signé une convention cadre pour...
La nouvelle année débute avec le lancement de quatre nouveaux projets Interreg auxquels le...
Lors du congrès annuel du CIRSE 2025, organisé du 13 au 17 septembre à Barcelone en Espagne, le...
Madame Amonet Bazam Ouoba Nebie, doctorante au 2iE-Institut International d'Ingénierie de l'Eau et...
Lucas Striegel est maître de conférences à ICube au sein de l'équipe génie civil et énergétique et...