Soutenance de thèse : Alix BOUCHON
Équipe : MIV
Titre : Modèles de régression multivariés pour la comparaison de populations en IRM de diffusion
Résumé : L'IRM de diffusion (IRMd) est une modalité d'imagerie qui permet d'étudier in vivo la structure des faisceaux de la substance blanche grâce à la caractérisation des propriétés de diffusion des molécules d'eau dans le cerveau. Les travaux de cette thèse se sont concentrés sur la comparaison de groupes d'individus en IRMd. Le but est d'identifier es zones de la substance blanche dont les propriétés structurelles sont statistiquement différentes entre les deux populations ou significativement corrélées avec certaines variables explicatives. L’enjeu est de pouvoir localiser et caractériser les lésions causées par une pathologie et de comprendre les mécanismes sous-jacents. Pour ce faire, nous avons proposé dans cette thèse des méthodes d'analyse basées voxel reposant sur le Modèle Linéaire Général (MLG) et ses extensions multivariées et sur des variétés, qui permettent d'effectuer des tests statistiques intégrant explicitement des variables explicatives.
En IRMd, la diffusion des molécules d'eau peut être modélisée par un tenseur d'ordre deux représenté par une matrice symétrique définie-positive de dimension trois. La principale contribution de cette thèse a été de montrer la plus-value de considérer, dans le MLG, l'information complète du tenseur par rapport à un unique descripteur scalaire caractérisant la diffusion (fraction d’anisotropie ou diffusion moyenne), comme cela est généralement fait dans les études en neuro-imagerie. Plusieurs stratégies d’extension du MLG aux tenseurs ont été comparées, que ce soit en termes d’hypothèse statistique (homoscédasticité vs hétéroscédasticité), de métrique utilisée pour l’estimation des paramètres (Euclidienne, Log-Euclidienne et Riemannienne), ou de prise en compte de l’information du voisinage spatial. Nous avons également étudié l'influence de certains prétraitements comme le filtrage et le recalage. Enfin, nous avons proposé une méthode de caractérisation des zones détectées afin d’en faciliter l’interprétation physiopathologique. Les validations ont été menées sur données synthétiques ainsi que sur une base d’images issues d’une cohorte de patients atteints de Neuromyélite optique de Devic.
Cette thèse a été dirigée par le professeur Fabrice Heitz et encadrée par Vincent Noblet.
La présentation en français aura lieu le mercredi 28 septembre 2016 à 10h30 dans l’amphithéâtre 301 du Forum de la faculté de médecine.
La conférence EGC (Extraction et Gestion des Connaissances) s’est déroulée du 27 au 31 janvier 2025...
En avril 2025, les travaux menés au sein de l’axe EM3 d’ICube (INSA Strasbourg) sur le stockage...
Le laboratoire ICube est impliqué dans le PEPR Cloud à travers le projet SCLICES-FR, porté par...
Dans le cadre d'une collaboration internationale, des chercheurs du laboratoire ICube Strasbourg et...
Dans cette interview, Thomas Alfroy, doctorant et membre de l’équipe Réseaux au Laboratoire ICube...
Dans cette interview, Emmanuel Martins Seromenho, doctorant et membre de l’équipe IPP...
La conférence EGC (Extraction et Gestion des Connaissances) s’est déroulée du 27 au 31 janvier 2025...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Haitao Ge, doctorant à l'INSA Strasbourg au sein de l'équipe Génie civil - énergétique (GCE) a...
Dans le cadre du projet Interreg Offensive Science 2PhaseEx, cinq membres de l’équipe ICube/Mécaflu...