PhD defense: Abdoul-Djawadou SALAOU
Title: Metric learning for multivariate time series analysis using DTW. Application to remote sensing and software engineering data
Team: SDC
Abstract: In the context of growing availability of data, Time Series are essential for extracting and understanding the evolution of underlying natural, artificial, social or economic phenomena. The related literature has extensively shown that the Dynamic Time Warping, in conjunction with some local/base distance δ (e.g. Euclidean distance ), is an effective similarity measure when univariate TS are considered. However, possible statistical coupling among different dimensions make the generalization of this metric to the multivariate case all but obvious. In practice, multivariate TS are describe by heterogeneous features which usually highlight different patterns (correlated, noisy, missing or irrelevant features). Therefore, to obtain a « fair » comparison of the data, Dtw needs a δ which « understands » the space of the data. Indeed, as the complexity of the data increases, defining such a « satisfactory » base distance/similarity δ becomes very difficult. It seems totally unrealistic to define δ manually or on the sole basis of an expert opinion. This has ignited our interest in new distance definition capable of capturing such inter-dimension dependencies by leveraging Distance Metric Learning. DML is to learn a distance metric to better discriminate the data by accentuating the distance relation among objects that are considered as (strongly) similar, or conversely (strongly) dissimilar. This information about (dis)similarity is often provided using must-link and cannot-link constraints between objects. However, in the case of voluminous and complex data, providing such constraints remains an open problem. Therefore, we propose a method, based on canopy clustering, to automatically extract the constraints from the dataset.
Thesis supervised by / Directeurs de thèse:
Pierre Gançarski, Professor, University of Strasbourg, France
Daniela Damian, Professor, University of Victoria, Canada
Jury:
Ian Davidson, Professor, University of California, USA (Reviewer)
Antoine Cornuéjols, Professor, AgroParisTech, France (Reviewer)
Alex Thomo, Professor, University of Victoria, Canada
Cedric Wemmert, Professor, University of Strasbourg, France
Germain Forestier, Professor, University of Mulhouse, France
The defense will take place on Thursday, December 17, 2020 at 4 pm online.
La conférence EGC (Extraction et Gestion des Connaissances) s’est déroulée du 27 au 31 janvier 2025...
En avril 2025, les travaux menés au sein de l’axe EM3 d’ICube (INSA Strasbourg) sur le stockage...
Le laboratoire ICube est impliqué dans le PEPR Cloud à travers le projet SCLICES-FR, porté par...
Dans le cadre d'une collaboration internationale, des chercheurs du laboratoire ICube Strasbourg et...
Dans cette interview, Thomas Alfroy, doctorant et membre de l’équipe Réseaux au Laboratoire ICube...
Dans cette interview, Emmanuel Martins Seromenho, doctorant et membre de l’équipe IPP...
La conférence EGC (Extraction et Gestion des Connaissances) s’est déroulée du 27 au 31 janvier 2025...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Haitao Ge, doctorant à l'INSA Strasbourg au sein de l'équipe Génie civil - énergétique (GCE) a...
Dans le cadre du projet Interreg Offensive Science 2PhaseEx, cinq membres de l’équipe ICube/Mécaflu...