PhD defense: John WANDETO
Title: Self-Organizing Map Quantization Error Approach for Detecting Temporal Variations in Image Sets
Abstract: A new approach for image processing, dubbed SOM-QE, which exploits the quantization error (QE) from self-organizing maps (SOM) was put to the test in this work. SOM produce low-dimensional discrete representations of high-dimensional image input data. The QE is determined by the image input data and the resulting final synaptic weights from the SOM's unsupervised learning process. The QE from analyses of time-series of images generates an indicator of potentially critical data change. For implementing SOM, a map size, neuronal neighbourhood distance, learning rate, and number of iterations in the learning process need to be determined. The combination of these parameters returning the lowest QE is always taken as the optimal parameter set for further analysis. The novelty of this approach is fourfold: First, it employs a SOM to determine the QE for different images of a single scene - typically from a time series dataset - unlike the traditional approach where different SOMs are applied on one and the same image. Second, the QE value is then a valid measure of spatial variability across images (proof of concept is provided in the thesis on the basis of several experiments including a detection experiment with human expert and non-expert observers using the concepts of signal detection theory). Third, the QE is shown to generate a specific and unique label for a given image within the dataset. Fourth, this label can be effectively used to track changes that occur in subsequently taken images of one and the same scene, providing a statistically reliable measure of variation in the image data as a function of time. The approach was applied here to computer generated images, medical images, and satellite images. Furthermore, the QE is shown to be reliably correlated with relevant geographic and demographic data. The technique introduced here is fast in terms of overall computation time (in seconds) and economic in terms of implementation. It provides a truly novel and, in principle, simple solution for automatically detecting the evolution of a pathology, or changes in urban and natural landscapes in image data. These may not be visible to the eye of the human expert. Moreover, Pearson's correlation test confirms a statistically significant correlation between the QE metric and image ground truth data.
Jury : Birgitta DRESP, CNRS senior researcher (France PhD director), Henry NYONGESA, Professor of Computer Science and Systems Engineering DEKUT (Kenya PhD director), Rachele ALLENA, HDR ENSAM (reviewer), Paul ROSIN, Professor of Computational Science U Cardiff (reviewer), José RAGOT, Professeur Eméritus en Automatique U Nancy (examinateur), Daniel GEORGE, associate professor with habilitation (examiner) - invited member: Yves REMOND, full professor.
The defense will be held in English and will take place on Friday September 14th, 2018, at 2:15 pm in the board room (2 Boussingault St. in Strasbourg).
Keywords*: change detection; self-organizing maps; quantization error; image time series; medical images; satellite images; demographic data; statistical correlation
Offers are available in the Job opportunities section of the ICube website or by clicking on the...
La 11e journée du département de mécanique s'est tenue le 18 juin 2024. Lors de cette...
A l'occasion de la soirée de gala du 103ème congrès de l’association française des professionnels...
Le 32ème Congrès Français de Thermique de la Société française de thermique (SFT) organisé par le...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...
La neurostimulation guidée par l’imagerie cérébrale pour traiter les patients atteints d’épilepsie...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...
L'AABC Europe (Advanced Automotive Battery Conference) est un événement annuel rassemblant des...
Un bandage intelligent permettant la prise de mesures numériques : c’est la solution développée par...
L'INSA Strasbourg et son équipe de recherche en génie électrique, Électronique, microélectronique...
Du 8 au 10 avril 2024 a eu lieu l’exposition « Light Interference » organisée lors du colloque SPIE...