Jelica Vasiljević invite you to the defence of his PhD thesis entitled “Generative Adversarial Networks in Digital Histopathology: Stain Transfer and Deep Learning Model Invariance to Stain Variation”. It will be held at 13:30h on 22nd September in room A301 (Campus d'Illkirch), followed by a reception in the cafeteria.
The jury will be composed of the following:
Thesis Supervisors
Cédric WEMMERT, Professor, University of Strasbourg, France
Srdjan STANKOVIĆ, Professor Emeritus, University of Belgrade, Serbia
Rapporteurs
Xavier DESCOMBES, Research Director, INRIA Sophia Antipolis, France
Maja TEMERINAC OTT, Professor, Hochschule Furtwangen, Germany
Examinators
Odyssée MERVEILLE, Lecturer, INSA Lyon, France
Sarah LECLERC, Lecturer, University of Bourgogne, France
Invites
Thomas LAMPERT, HDR, University of Strasbourg, France
For those who cannot physically attend, it will be possible to follow the defence by videoconference via the Zoom application:
https://cnrs.zoom.us/j/94206932195?pwd=UitFYjlzQU9RVDVWNFFSSkk0RHE1Zz09
Meeting ID: 942 0693 2195
Password: xkn11A
Title: Generative Adversarial Networks in Digital Histopathology: Stain Transfer and Deep Learning Model Invariance to Stain Variation
Abstract: Current state-of-the-art deep learning methods are data-hungry approaches which require huge annotated data collections to perform well. Nevertheless, digital histopathology, like the other fields of the medical domain, is known for its scarcity of data. Moreover, considering the variations that can occur due to the staining process and staining protocols, already collected and annotated datasets can only be reused with limited success. Such stain variation represents a source of domain shift and significantly affects deep learning-based solutions in practice. This thesis investigates the potential of Generative Adversarial Networks (GANs) in two directions for addressing these problems --- stain transfer to enable reusing already available data collections; and developing stain invariant solutions which would alleviate the need for additional data acquisition or annotations.
Keywords: deep learning, Generative Adversarial Networks (GANs), segmentation, digital histopathology
Date: 22nd September, 13:30h, A301 + cafeteria.
La conférence EGC (Extraction et Gestion des Connaissances) s’est déroulée du 27 au 31 janvier 2025...
Nous sommes fiers de voir les travaux menés au sein du laboratoire ICube contribuer à une solution...
Du 6 au 11 avril 2025, la communauté internationale du traitement du signal s’est réunie à...
Lors de sa 11ème édition (27 mai – 29 juin 2025), le Street Art Fest Grenoble-Alpes a présenté une...
L’article “Few-shot Text-driven Adaptation of Foundation Models for Surgical Workflow Analysis” de...
💡 Et si les sciences se racontaient à la première personne ? C’est l’idée originale au cœur de...
Que se passe-t-il lorsque l’eau envahit un quartier urbain ? Comment circule-t-elle entre les...
Les 26 et 27 juin 2025, à la Faculté de Chirurgie Dentaire de Strasbourg, se sont tenues les 12ᵉ...
Les 26 et 27 juin 2025, à la Faculté de Chirurgie Dentaire de Strasbourg, se sont déroulées les 12ᵉ...
Les 12ᵉ Journées Scientifiques de la Fédération de Médecine Translationnelle de Strasbourg (FMTS)...
Le 4 juillet dernier, le Département Imagerie, Robotique, Télédétection & Santé (D-IRTS) du...