Soutenance de thèse : Florian ALLENDER
Titre : Augmentation de données pour l'analyse d'images histopathologiques : approches par génération d'images et déformations spatiales pour la segmentation de glomérules
Équipe : SDC, IGG
Résumé
Dans le cadre de cette thèse, nous nous intéressons à des données histopathologiques rénales. L'histopathologie rénale est cruciale dans l'étude des maladies du rein, et en particulier du rejet de greffes, qui se produit avec un taux d'incidence de 7,9% pendant la première année. Pour étudier ces pathologies, les médecins utilisent les outils issus de l'histopathologie numérique pour analyser les glomérules, structures biologiques chargées du filtrage du sang et de la production de l'urine. Ces structures sont complexes et comportent de multiples sous-structures (membranes, capillaires, cellules mésangiales et endothéliales, podocytes) rendant leur segmentation automatique particulièrement difficile. Notre objectif est d'améliorer la segmentation automatique de glomérules dans des couprs complètes en utilisant un CNN de type U-Net, modèle standard en segmentation d'images médicales. L'entraînement d'un tel modèle nécessite une grande quantité d'images annotées (plusieurs dizaines de milliers). Or, dans notre contexte, le nombre d'images annotées disponibles est de l'ordre de quelques centaines seulement, ce qui pose la question des augmentations de données. Nous proposons dans cette thèse d'étudier l'application et l'impact d'augmentations de deux types. Nous étudions premièrement les variations géométriques, introduites à l'aide de déformations spatiales aléatoires. Bien que l'utilisation de déformations aléatoires. Bien que l'utilisation de déformations aléatoires. Bien que l'utilisation de déformations aléatoires soit classique pour l'augmentation de données, aucune évaluation n'a été proposée dans la littérature pour les images histopathologiques, et pour les images de glomérules en particulier. Deuxièmement, nous étudions les variations de texture, introduites à l'aide de variations de texture, introduites à l'aide de méthodes de synthèse de texture et de modèles génératifs, et qui n'ont fait l'objet que de très peu de travaux en imagerie histopathologique rénale.
Le jury est composé de :
La soutenance se tiendra le mercredi 30 novembre à 14h00 dans l'amphithéâtre A302 sur le pôle API à Illkirch. La soutenance sera en français suivie d'un pot.
Offers are available in the Job opportunities section of the ICube website or by clicking on the...
Le 13 novembre, le CNRS a réuni les 26 start-up issues de ses laboratoires sous tutelle,...
L'équipe de l'Université de Strasbourg et la délégation Alsace du CNRS se sont brillamment...
Le vendredi 20 septembre a eu lieu la réunion de lancement du projet INTERREG 2PhaseEx, au...
Paris 27 aout 2024 – ARCHOS annonce que POLADERME, filiale du Startup studio Medtech du groupe...
La 11e journée du département de mécanique s'est tenue le 18 juin 2024. Lors de cette...
A l'occasion de la soirée de gala du 103ème congrès de l’association française des professionnels...
Le 32ème Congrès Français de Thermique de la Société française de thermique (SFT) organisé par le...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...
La neurostimulation guidée par l’imagerie cérébrale pour traiter les patients atteints d’épilepsie...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...