PhD defence : Hussein El Amouri
Team: SDC
Date & time : September 22nd, at 09:00 AM at ICube, Illkirch (Room A301)
Title : "Learning Explainable Constrained Representation for Time Series"
Abstract : This PhD research introduces a novel approach to learning explainable constrained representations for time series data, with a primary focus on addressing two critical challenges: the lack of labeled data and time series distortions. Labeling time series data is a resource-intensive process; therefore, clustering methods are widely used. However, these clustering methods may not produce results aligned with expert requirements and can benefit from further improvement through constrained clustering. Second, time series data often contain distortions, and capturing these distortions is essential for accurate clustering. Our proposed approach empowers experts to guide the learning process by providing information (constraints) about pairs of samples, indicating whether they are similar or dissimilar. This concept stems from the framework of constrained learning, where experts provide information to guide the clustering process. This approach is rooted in the concept of 'shapelets,' which are discriminative subsequences capable of distinguishing between different patterns within time series data. We extend our work from a previous study on unsupervised shapelet learning, referred to as 'Learning DTW Preserving Shapelets,' into a semi-supervised approach. In this extension, we leverage both types of constraints while approximating Dynamic Time Warping (DTW) distances. DTW is a distance measure well-suited for accommodating the various distortions commonly encountered in time series data. We term this extended approach 'Constrained DTW Preserving Shapelets,' as it effectively incorporates the constraints provided by experts into the learning process while approximating DTW in the transformed space. Furthermore, our research delves into the interpretability of shapelets and explores their potential for providing descriptions of clustering results. This interpretability enables experts to gain a deeper understanding of the clustering results, facilitating an interactive process that ultimately leads to improved clustering outcomes. Additionally, by utilizing the feature space, we can investigate the possibility of proposing further constraints to experts, enabling an active and informed clustering process.
The jury will be composed of:
À l’occasion de la fête de la ceinture verte de la Ville et Eurométropole de Strasbourg, Lisa Le...
Avec l’augmentation de la population urbaine et le réchauffement climatique, les notions de...
Lorsqu’une inondation survient, chaque minute gagnée peut être déterminante. Afin d’aider les...
ICube était présent à l’édition 2023 de l’évènement Kids’ University, qui s’est déroulée le...
Sonja Kallio, ATER ( Attachée Temporaire d'Enseignement et de Recherche) à INSA Strasbourg et au...
Du 3 au 7 juillet dernier, a eu lieu à Strasbourg la Plate-forme d'Intelligence Artificielle 2023...
La finale du Prix Biot-Fourier du Congrès Français de Thermique SFT 2023 a eu lieu le 31 mai et le...
La passation du flambeau de la prochaine édition du Congrès Français de Thermique 2024 s’est...
Ce jeudi 25 mai dernier, l'UFR Maths-Info a reçu les élèves des collèges Foch et Sophie Germain de...
Yves Remond, chercheur à ICube, annonce la publication de son nouvel ouvrage disponible aux...
ARC, aiguille à raideur contrôlable, c’est avant tout le projet de deux chercheurs : Lennart...