Todor PETROV, research fellow at the Laboratory of Metal Vapor Lasers (LMVL), will give a talk thursday 16th june 2016 at 10.00am in room A302 of the pole API building in Illkirch.
Title : "Filling without drilling" - Advances of Lasers in Dental Applications
Abstract : During the last few decades, laser technology has continuously developed, to the point where new types of lasers such as ultra-short pulsed lasers in the subpico second regime have entered medical and dental applications. In the early days, various laser trials with CO2 lasers to make teeth material more resistant to bacteria that cause caries were reported. The trials failed because thermal side effects damaged the enamel. Nowadays, the idea has experienced a renaissance with new lasers and a more adequate pulse regime. In the late 1980's, the first experimental work demonstrated that Er:YAG lasers can be used to ablate dental tissue such as enamel and dentin. While the first system used an articulated arm for the light transmission, the next generations were equipped with fibre technology which make the application much more flexible. Starting with caries removal and cavity preparations, more application modalities by simply changing the handpiece has made the laser a universal tool in dentistry. Root channel disinfection, soft tissue corrections by ablation and periodontal applications with removal of infected plaques are new avenues of investigation. Treatment of periimplantitis is the latest application in which there is no mechanical alternative. The laser pulses remove the infected bone around the implant and sterilize the surface of the structured implant. Thus implants can be saved so that the growing bone is able to fix them again. Now, in the third generation of lasers, both detection and therapy can be combined with in the same handpiece. This is important in parodontology in which plaque has to be removed without visual contact by the dentist. Such new technology would also be possible for example in treating keyhole caries which develop with in the dentin under the enamel. In this case, it would be possible to pass a fibre through a small hole in order to save sound enamel, to scan over an angle so as to detect where infected material is to be ablated and to then remove the caries in the same procedure. This is not far from becoming a reality, especially with the development of new filling materials adapted to this procedure. In addition, laser sources are becoming smaller and more powerful and diode pumped fibre lasers are replacing solid-state lasers. The broadening of the wavelength spectrum of laser sources also facilitates the selective photothermolysis. Laser tissue diagnosis will become even more important than laser therapy procedures. Combining both online diagnosis and therapy will be a large step forward and breakthrough for safe and effective laser treatment. Tissue thermal damage can be avoided, which means less pain for the patient during treatment and is also likely to reduce the fear that many people have of the dentist. Lasers will eliminate the noise of the dental instruments that to some patients is nearly as disturbing as the physical discomfort. This demonstrates that laser technology has still enough potential for new developments.
Bio : Dr. Todor Petrov is a research fellow at the Laboratory of Metal Vapor Lasers (LMVL), ISSP, Bulgarian Academy of Sciences since August 1994. His PhD (April 1994) was on "Frequency Conversion of Copper Bromide Vapor Laser Radiation". He held a Volkswagen-Stiftung postdoctoral position at the AEEO, Ruhr Universität Bochum, Germany (1997) on “UV lasing in capacitively coupled Radio-Frequency excited He (Ne) Copper vapor discharge”. Each year between 2002-13 he was Guest Professor at the Institute for Laser Science, University of Electro-Communications, Tokyo, Japan. His work was related to the study of nonlinear optical phenomena generated by fs laser pulses in glassy matrices as well as in thin metal films. He has worked for eight national research projects (2 as project leader) and four international projects (1 as project leader). Currently, he is an associate professor at the LMVL, ISSP. His main fields of scientific research include the development of new laser systems, nonlinear optical phenomena, laser–matter interaction, ultrafast laser processing, laser applications in dentistry and medicine.
Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...
Le 13 novembre, le CNRS a réuni les 26 start-up issues de ses laboratoires sous tutelle,...
L'équipe de l'Université de Strasbourg et la délégation Alsace du CNRS se sont brillamment...
Le vendredi 20 septembre a eu lieu la réunion de lancement du projet INTERREG 2PhaseEx, au...
Paris 27 aout 2024 – ARCHOS annonce que POLADERME, filiale du Startup studio Medtech du groupe...
La 11e journée du département de mécanique s'est tenue le 18 juin 2024. Lors de cette...
A l'occasion de la soirée de gala du 103ème congrès de l’association française des professionnels...
Le 32ème Congrès Français de Thermique de la Société française de thermique (SFT) organisé par le...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...
La neurostimulation guidée par l’imagerie cérébrale pour traiter les patients atteints d’épilepsie...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...