Florian TILQUIN, doctorant dans l'équipe MIV, fera un séminaire en C218, jeudi 19 octobre à 14h00 à Télécom Physique Strasbourg à Illkirch.
Titre : Modèles statistiques non linéaires sur des variétés en imagerie multimodale TEP/IRM/ITD. Application à la détection précoce et au suivi longitudinal dans la maladie d’Alzheimer
Résumé : La maladie d'Alzheimer est la première cause de maladie neurodégénérative à l'origine de démence chez le sujet âgé. Les thérapeutiques actuelles (anti-cholinestérasique par exemple) ne font que ralentir le processus, en retardant le déclin fonctionnel. Les tests neuropsychologiques ne signent la maladie qu'à un stade relativement avancé du déclin cognitif. Il en découle l'importance d'un diagnostic précoce afin de débuter le traitement au plus tôt. Le but du projet de recherche est donc de permettre un tel diagnostic précoce de la maladie d'Alzheimer par imagerie (TEP,IRM,IRMf...).
L'exposé présente le développement de nouveaux modèles et méthodes d'apprentissage statistique permettant une détection précoce des signes de la maladie, en comparant les images d'un patient avec une base d'images de témoins ne présentant pas la pathologie. Les modèles linéaires, particulièrement développés dans la littérature, présentent des limitations connues dans leur capacité à représenter des données complexes. On présentera ici des modèles non linéaires, basés sur l'apprentissage de variétés de faible dimension, la variété d'une population (témoins) étant modélisée dans le but de projeter sur celle-ci un patient, dont on cherche à déterminer les différences avec cette population.
La difficulté de la projection réside en deux points : la nécessité d'une méthode de réduction de dimension y compris pour les individus n'appartenant pas à la variété (problème dit du out-of-sample) et une méthode de calcul de pré-image, (i.e. trouver l'image en grande dimension (IRM ou PET) correspondant le mieux à une projection en basse dimension). Une méthode de projection non linéaire complète utilisant l'extension de Nyström pour le problème out-of-sample et une méthode d'optimisation convexe pour le calcul de la pré-image seront présentées.
Enfin, des tests préliminaires permettant de valider la méthode sur des bases de données synthétiques obtenues par modèles d'apparence permettront de donner un aperçu des performances de la méthode.
Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Le salon Pollutec est l'événement international de référence des solutions pour l'environnement...
Haitao Ge, doctorant à l'INSA Strasbourg au sein de l'équipe Génie civil - énergétique (GCE) a...
Dans le cadre du projet Interreg Offensive Science 2PhaseEx, cinq membres de l’équipe ICube/Mécaflu...
Le 13 novembre, le CNRS a réuni les 26 start-up issues de ses laboratoires sous tutelle,...
L'équipe de l'Université de Strasbourg et la délégation Alsace du CNRS se sont brillamment...
Le vendredi 20 septembre a eu lieu la réunion de lancement du projet INTERREG 2PhaseEx, au...
Le projet ENERGETIC a lancé sa première vidéo promotionnelle illustrant les principaux objectifs et...
Paris 27 aout 2024 – ARCHOS annonce que POLADERME, filiale du Startup studio Medtech du groupe...
Les topographes de l’INSA Strasbourg exerçant leurs activités de recherche au sein de l’équipe...