PhD defense: Abdoul-Djawadou SALAOU
Title: Metric learning for multivariate time series analysis using DTW. Application to remote sensing and software engineering data
Team: SDC
Abstract: In the context of growing availability of data, Time Series are essential for extracting and understanding the evolution of underlying natural, artificial, social or economic phenomena. The related literature has extensively shown that the Dynamic Time Warping, in conjunction with some local/base distance δ (e.g. Euclidean distance ), is an effective similarity measure when univariate TS are considered. However, possible statistical coupling among different dimensions make the generalization of this metric to the multivariate case all but obvious. In practice, multivariate TS are describe by heterogeneous features which usually highlight different patterns (correlated, noisy, missing or irrelevant features). Therefore, to obtain a « fair » comparison of the data, Dtw needs a δ which « understands » the space of the data. Indeed, as the complexity of the data increases, defining such a « satisfactory » base distance/similarity δ becomes very difficult. It seems totally unrealistic to define δ manually or on the sole basis of an expert opinion. This has ignited our interest in new distance definition capable of capturing such inter-dimension dependencies by leveraging Distance Metric Learning. DML is to learn a distance metric to better discriminate the data by accentuating the distance relation among objects that are considered as (strongly) similar, or conversely (strongly) dissimilar. This information about (dis)similarity is often provided using must-link and cannot-link constraints between objects. However, in the case of voluminous and complex data, providing such constraints remains an open problem. Therefore, we propose a method, based on canopy clustering, to automatically extract the constraints from the dataset.
Thesis supervised by / Directeurs de thèse:
Pierre Gançarski, Professor, University of Strasbourg, France
Daniela Damian, Professor, University of Victoria, Canada
Jury:
Ian Davidson, Professor, University of California, USA (Reviewer)
Antoine Cornuéjols, Professor, AgroParisTech, France (Reviewer)
Alex Thomo, Professor, University of Victoria, Canada
Cedric Wemmert, Professor, University of Strasbourg, France
Germain Forestier, Professor, University of Mulhouse, France
The defense will take place on Thursday, December 17, 2020 at 4 pm online.
Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...
Le 13 novembre, le CNRS a réuni les 26 start-up issues de ses laboratoires sous tutelle,...
L'équipe de l'Université de Strasbourg et la délégation Alsace du CNRS se sont brillamment...
Le vendredi 20 septembre a eu lieu la réunion de lancement du projet INTERREG 2PhaseEx, au...
Paris 27 aout 2024 – ARCHOS annonce que POLADERME, filiale du Startup studio Medtech du groupe...
La 11e journée du département de mécanique s'est tenue le 18 juin 2024. Lors de cette...
A l'occasion de la soirée de gala du 103ème congrès de l’association française des professionnels...
Le 32ème Congrès Français de Thermique de la Société française de thermique (SFT) organisé par le...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...
La neurostimulation guidée par l’imagerie cérébrale pour traiter les patients atteints d’épilepsie...
L'un des 3 Prix du meilleur poster de la 11èmes journées de la Fédération de Médecine...