Search & Find
DiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporama
Accueil
ICube   >   Agenda : Thèse : Segmentation of Deforming Meshes and Its Application to Similarity Measurement

Thèse : Segmentation of Deforming Meshes and Its Application to Similarity Measurement

Le 4 novembre 2014
À 14h00
Illkirch - Pôle API - A302

Soutenance de thèse : Guoliang LUO

Équipe : IGG

Titre : Segmentation of Deforming Meshes and Its Application to Similarity Measurement

Résumé : With an abundance of animation techniques available today, deforming meshes have become a subject of various data processing techniques in Computer Graphics community, e.g., shape retrieval and action recognition. Such tasks require efficient representations of animated meshes such as segmentation. Several spatial segmentation methods based on the movements of each vertex, or each triangle, have been presented in existing works that partition a given deforming mesh into rigid components. However, to the best of our knowledge, the segmentation of deforming meshes by taking into account of temporal deformation coherency has not been studied before. In this thesis, our contributions are the new segmentation techniques that compute the temporal and spatio-temporal segmentation for deforming meshes. In the first contribution, our temporal segmentation by minimizing the sum of within-segment dissimilarity can produce consistent temporal segmentation on different deforming meshes exhibiting similar motion, despite their shape differences. For the second contribution, we have developed a spatio-temporal segmentation method by investigating both the temporal and spatial deformation coherency of triangles. By representing the segmentation results into evolving graphs, we further propose a motion similarity measurement method by using a sequence alignment method. The experiment results show that our similarity measurement method successfully reflects human perception on the motion similarities of deforming meshes.

Le jury est composé de Hyewon Seo (Université de Strasbourg), Frederic Cordier (Université de Haute Alsace), Stefanie Hahmann (Institut polytechnique de Grenoble), Mohamed Daoudi (Institut Mines-Télcom/Télécom Lille1), Atilla Baskurt (INSA Lyon) et Yong Xu (Université de Technologie de Chine du Sud).

La présentation aura lieu le  mercredi 17 décembre 2014 à 14h00 dans l'amphithéâtre A302 au Pôle API d'Illkirch.

À la une

Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...

Flux RSS

Flux RSS