Search & Find
DiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporamaDiaporama
Accueil
ICube   >   Agenda : Thèse : Parallélisation hybride d’une application de détection de noyaux cellulaires

Thèse : Parallélisation hybride d’une application de détection de noyaux cellulaires

Le 10 septembre 2019
À 13h30
Illkirch - Pôle API - A301

Soutenance de thèse : Daniel SALAS

Titre : Parallélisation hybride d’une application de détection de noyaux cellulaires

Équipe : ICPS

Résumé : La démocratisation récente des scanners de lames a permis de passer de l’observation directe au microscope à l’analyse d’images haute définition sur écran. Cette évolution a entraîné le développement d’un nouveau champ applicatif : la détection automatique du cancer. La méthode Marked Point Process (MPP) utilise un principe original basé sur la génération aléatoire d'ellipses et la mesure d'attache aux données. La parallélisation de cette méthode s’est révélée particulièrement efficace dans un environnement à mémoire partagée sur CPUs et sur GPUs. Cependant, la taille des images analysées est limitée soit par la capacité mémoire, soit  par le nombre de threads disponibles. Or, le véritable enjeu consiste à analyser une lame complète dont les dimensions sont de l’ordre de 50 000 x 50 000 pixels. Nous proposons d'ajouter une dimension distribuée à la parallélisation pour permettre de traiter une lame entière dans des temps compatibles avec le flux d'arrivée des échantillons. Cette parallélisation hybride devra prendre en compte les traitements locaux à l'échelle globale pour garantir la validité de l'algorithme MPP.
Nous proposons d'optimiser la génération des ellipses sur l'image puis d'utiliser une stratégie basée sur la loi hypergéométrique pour garantir une distribution homogène des objets générés sur tous les nœuds. Pour implémenter cette solution, nous développerons un workflow de traitement d'image basé sur la méthode de parallélisation ORWL.
Nous examinerons les performances de ce nouvel algorithme par des tests de passage à l'échelle et d'accélération. Puis nous explorerons de nouvelles pistes pour en améliorer la performance en réduisant notamment le nombre de threads utilisés par la librairie de parallélisation.

Le jury est composé de : M. Jens GUSTEDT (INRIA, Directeur de thèse), Mme Isabelle PERSEIL (Inserm, Co-encadrant de thèse), Mme Nahid EMAD (USVQ, Rapporteur), M. Vincent BRETON (CNRS, Rapporteur), M. Michel KERN (INRIA, Examinateur), M. Vincent NOBLET (CNRS, Examinateur).

Mots-clefs : Calcul parallèle hybride, imagerie médicale, détection automatique de cancer du sein

La soutenance se tiendra le mardi 10 Septembre 2020 à 13h30 dans la salle A301 du Pôle API d'Illkirch.

À la une

Le dépôt des candidatures pour les postes d’enseignants-chercheur est ouvert. Les offres sont...

Flux RSS

Flux RSS